ACA diagnostic telemetry ------------------------- The :mod:`mica.archive.aca_hdr3` module works with Header 3 data (extended ACA diagnostic telemetry) available in 8x8 ACA L0 image data. The module provies an MSID class and MSIDset class to fetch these data as "pseudo-MSIDs" and return masked array data structures. See `ACA HDR3 Pseudo-MSIDS`_ for the list of available pseudo-MSIDs. >>> from mica.archive import aca_hdr3 >>> ccd_temp = aca_hdr3.MSID('ccd_temp', '2012:001', '2012:020') >>> type(ccd_temp.vals) 'numpy.ma.core.MaskedArray' >>> from Ska.Matplotlib import plot_cxctime >>> figure(figsize=(5, 3.5)) >>> plot_cxctime(ccd_temp.times, ccd_temp.vals, '.') .. image:: plots/plot_cxctime_ccd_temp.png >>> perigee_data = aca_hdr3.MSIDset(['ccd_temp', 'aca_temp', 'dac'], ... '2012:125', '2012:155') >>> figure(figsize=(5, 3.5)) >>> plot(perigee_data['aca_temp'].vals - perigee_data['ccd_temp'].vals, ... perigee_data['dac'].vals, '.') >>> subplots_adjust(bottom=0.15) >>> ylabel('TEC DAC Control Level') >>> xlabel('ACA temp - CCD temp (C)') .. image:: plots/dac_vs_tempdiff.png Retrieving pseudo-MSIDs with this module will be slower than Ska.engarchive fetches of similar telemetry, as the aca_hdr3 module reads from each of the collection of original fits.gz files for a specified time range. Ska.engarchive, in contrast, reads from HDF5 files (per MSID) optimized for fast reads.:: In [3]: %time ccd_temp = aca_hdr3.MSID('ccd_temp', '2012:001', '2012:020') CPU times: user 5.18 s, sys: 0.12 s, total: 5.29 s Wall time: 7.46 s In [9]: %time quick_ccd = Ska.engarchive.fetch.MSID('AACCCDPT', '2012:001', '2012:020') CPU times: user 0.02 s, sys: 0.00 s, total: 0.03 s Wall time: 0.81 s ACA HDR3 Pseudo-MSIDS --------------------- .. raw:: html :file: hdr3_only_msids.html